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FITTING SURFACES TO SCATTERED DATA

Larry L. Schumaker
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’ This paper is a survey of a variety of numerical methods 
for fitting a function to data given at a set of points scat­

tered throughout a domain in the plane. We discuss four 
classes of methods: (1) global interpolation, (2) local inter-

' t>olation, (3) global approximation, and (4) local approximation. 
Wet^lso discus^'two-stage methods and contouring. The surfaces 
constructed will include polynomials, spline functions, and ra­

tional functions, among others.

1. Introduction

Our aim is to survey methods for solving the following 
problem.

PR0BI£H 1.1. Let D be a domain in the (x.y)-plane, and sup­

pose F is a real-valued function defined on D. Suppose we 
are given the values F^ = F(x^^,y^) of F at some set of
points (x^^y.) located in 
f defined on D which reasonably approximates F.

(Xi,yi> located in D, i = 1,2,...,N. Find a function

i- DlS'lr

This problem is, of course, precisely the problem of fit­

ting a surface to given data. In many cases the domain D is 
a rectangle and the data points lie on a rectangular grid.
There are, however, many practical problems (see the following 
section for some specific examples), where D is of unusual 
shape and where the data points are Irregularly scattered 
throughout D. Thus, while we shall pay some attention to spe­

cial methods for regularly spaced data, we are actually more 
Interested in the general case.

There are basically two approaches to handling Problem 1.1.
First, we may try to construct a function f which interpolates
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the  data exactly;   i.e.,   such that 

i =  1,2,...,N. 

This approach may be desirable when the  function values at  the 

(1.1)    fOc^yp = F.. 

data points are known to high precision and where it is highly 

desirable that these values be preserved by the approximating 

function. 

The second approach involves constructing f which only 

approximately fits the data.  This may be regarded as data 

smoothing and will be desirable when (as is often the case) 

the data are subject to inaccurate measurement or even errors. 

The question of whether interpolation or approximation should 

be used will not be discussed further here—this is a problem 

which must be settled for the individual problem at hand. 

In discussing Problem 1.1, it will be convenient to make 

a further distinction between those methods which are local in 

character (i.e., where the value of the constructed surface  f 

at the point  (x,y)  depends only on the data at relatively 

nearby points)  and those methods which are global in nature. 

Thus, we discuss four categories of methods in sections 3-6: 

(1) global interpolation, (2) local interpolation, (3) global 

approximation, and (4) local approximation.  In each of these 

sections we further subdivide the material according to the 

type of functions being used and the type of data (scattered or 

not) for which the method is suitable. 

In discussing methods which apply only to special arrange- 

ments of data points, we have two objectives in mind.  First, 

the methods are of interest in their own right. More important- 

ly in terms of Problem 1.1, however, such methods can also be 

used in two-stage processes in which we first construct a sur- 

face g based on the scattered data, and then use g to gen- 

erate regular data for the construction of another (perhaps 

smoother or more convenient) surface f.  Such two-stage methods 



will be discussed (along with several examples) in more detail 

in section 7, 

For many of the methods based on regular data and some of 

those for scattered data, error bounds are available to indi- 

cate how well smooth functions are approximated by the surface 

constructed. We do not have space to go into the extensive 

literature on error bounds,  A simple test of how well a method 

will approximate smooth functions is, however, provided by its 

ability to reproduce polynomial surfaces exactly (that is, if 

F is a polynomial in x and y up to a certain degree, then 

the surface f is identically equal to F). For many of the 

methods we will be able to indicate the corresponding degree of 

exactness. 

In many of the applications of surface-fitting techniques 

(cf. the examples in section 2), the ultimate aim is to use the 

data to construct a contour map of the unknown function. Since 

F is known only at the data points, we must be content to con- 

struct a contour map for one of our fitted surfaces. In sec- 

tion 8 we discuss some approaches to accomplishing this numeri- 

cally. 

We close this introduction with a disclaimer--this survey 

does not include all possible methods for fitting surfaces to 

scattered data. For example, we have not discussed Fourier 

series methods, spatial filtering, and other such related sta- 

tistical techniques.  In addition, the set of references for 

those methods which we have discussed are also not complete. 

My original intention was to compile as complete a bibliography 

as possible, but the sheer bulk of relevant papers and my in- 

ability to locate all of tham convinced me to settle for less. 

I have opted to quote a fairly representative list of papers, 

including several other surveys.  Further references can be 

found by consulting these.  I shall be very happy to receive 

information on references and methods I have overlooked. 



2.     Examples 

In  this  section we  shall quote  several explicit examples 

of  Problem  1.1  to emphasize  the  fact  that unusually shaped re- 

gions  and  scattered data do arise  frequently in practice. 

EXAMPLE 2,1,     Petroleum exploration.     In exploring for petro- 

leum,   the  contours of various  underground  layers  of  sandstone, 

shale,   limestone,   etc,   can be  important  indicators of possible 

oil   fields.     Frequently,   data on  such layers is available  from 

exploratory wells,  which,   however,   have most likely been drilled 

at  locations  scattered randomly throughout some geographical re- 

gion of interest.    To quote a  specific example,   Robinson, 

Charlesworth,  and Ellis   [166]   consider precisely this problem 

for  some  data obtained  from  7,500  wells  drilled in Alberta.   For 

another example of this  type,   see Whitten and Koelling   [208]. 

Problems  similar to  that mentioned in Example  2.1 arise 

frequently in cartography and  submarine  topography where  the 

measurements  represent actual elevations.     In some cases  the 

measurements must be  taken from photographs or from sonar mea- 

surements  and are usually subject  to some measurement error 

(eg.   see Kubik  [125]   for a discussion of photograrametry) . 

EXAMPLE  2.2.     Geological maps.     There are a great many problems 

in Geology and the earth sciences  in which the data arises  from 

some other  function of  location besides  actual elevations.     For 

example,   some geological variables  of interest might include 

concentrations of various chemicals,   specific gravity,   electri- 

cal  resistivity,   grain size,   texture,   optical properties,   iso- 

tope  ratios,   etc.    To quote a  specific  example,   Bhattacharyya 

[21,   22]   discusses methods  for fitting a surface to measurements 

(taken by airborne sensors)   of magnetic potentials over a cer- 

tain portion of the Yukon,     See also Bhattacharyya and Raychaud- 

huri   [23]   and Grain and Bhattacharyya   [61], 



The  importance of surface-fitting methods in the earth sci- 

ences  can be  judged by the  large number of papers in  the area 

relating  to various  fitting methods.     For a  further  list of 

problems and a discussion of some of  the methods which have  been 

applied,   see  the books  of Bohrenberg and Giese   [31],   Chorley 

[51],   David   [62],  Harbaugh and Merriam   [98],  and Merriam  [140]. 

Recent  survey papers  induce Whitten   [203,   205]  and Whittßa and 

Koelling   [20 7],    To add  just a   few more of  the papers  in the 

geological  literature dealing with surface  fitting    tc our  list, 

we mention Anderson  [7],   Grant   [91],  Hessing,  Lee,   and Pierce 

[114],   Holroyd and Bhattacharyya   [115],   Kubik  [123,   125],   Nor- 

cliffe   [151],   Reilly   [162],  Whitten   [200,   201,   204],  and Whit- 

ten and Koelling  [206]. 

EXAMPLE 2.3.     Heart potentials.     In order to diagnose certain 

abnormal heart conditions,   it is  desired  to make a series of 

several hundred contour maps  of  the heart potential  field at 

time  steps of 1/100  of a second throughout a heart  beat.    Data 

on  these heart potentials can be  obtained by fitting the patient 

with a shirt containing probes.     Because of body geometry,  when 

this  shirt  is  flattened out it takes the nonrectangular form 

illustrated in Figure  1.    Although the probes could be arranged 

fairly regularly in this domain,   because of the added signifi- 

(Fir^im 
Figure  1.     Heart Potential Measurements 



cance of frontal measurements, in practice more probes are 

fitted there than in the back.  This example was brought to my 

attention by Ms. Patrizia Ciarlini of Rome. 

Potential fields arise in many other applications. We 

have already mentioned Geology in Example 2.2. For some exam- 

ples in modelling plasmas see Buneman [40].  The problem arises 

in Biersack and Fink [24] in experimentally studying crystal 

structure using neutron bombardment.  Data from waveform dis- 

tortion in electronic circuits can be found in Akima [5, 6], 

3. Global interpolation methods 

In this section we outline several methods for solving the 

interpolation problem (1.1). 

3.1 Polynomial interpolation. (Scattered data) . The general 

theory of finite dimensional interpolation is, of course, very 

well known (e.g., see Davis [63]). Briefly, if (0.}, are N 

functions defined on the domain D, then the function 

N 
(3.1)  f(x,y) = Z a.0.(x,y) 

j=l 
J J 

will satisfy (1.1) if and only if  {a.K  is a solution of the 

linear system 

n 
(3.2)  Z a.0.(x .y.) = F.,  i  1.2,...,N. 

, 1 j j i 'i    i'       >   >       > 

This system has a (unique) solution for arbitrary choices of 

data precisely when it is nonsingular.  This depends on the 

choice of functions (0.},  and the location of the data points. 
N 

To illustrate this method, we may choose the {0.),  to be 

polynomials in x and y.  Given N, there is some leeway in 

the choice of which powers of x and y to use. For example, 

with N = 3 one could use the functions 1, x, y or possibly 
2  2 

the functions 1, x , y , etc.  When N is of the form N = 



(d+l)(d+l), we might use the functions 

As simple as this sounds, there are some serious difficul- 

ties with polynomial interpolation of scattered data. For open- 

ers, it is not so easy to guarantee that the system (3.2) is 

nonsingular.  To give a very simple example, consider the case 

N = 3 with the functions 1, x, y.  If the three data points 

happen to lie on a line, then (3,2) will in fact be singular. 

Even when (3.2) is nonsingular, it will often be the case (at 

least if N is moderately large) that the system will be ill- 

conditioned.  Finally, as is well known, polynomials of even 

moderate degree exhibit a considerable oscillatory character, 

and the resulting surface (even though it is C ) is often too 

undulating to be acceptable.  The general problem of polynomial 

interpolation to scattered data is not usually treated in Nu- 

merical Analysis and Approximation Theory books (see, however, 

Kunz [126], Prenter [157], and Steffenson [186]). Some papers 

dealing with rhe question include Guenther [93], Thatcher [189], 

Thatcher and Milne [190], and Whaples [197], Assuming the in- 

terpolant exists, error bounds have been studied in Ciarlet and 

Raviart [52-55], 

Let 

V n-jn (3-3) V = span {x y W,^o 
be the space of polynomials of degree m in x and of degree 

n in y.  This linear space is of dimension (m+1)(n+1)  and 

is, in fact, the tensor product of the linear spaces P     and 

? .     It is perhaps of interest to note that there always exists 

a (usually nonunique) polynomial p e ^    which solves the 

interpolation problem (1.1), no matter how the data points are 

positioned, see Prenter [158]. 



3.2 Polynomial interpolation (gridded data).  We begin this 

subsection by defining what we mean by gridded data.  Let 

(3.4)  H - [a,b] x [c,d] 

be a rectangle, and let 

(3.5) 

x0<x1<   ... . . .    <   X,      .     - 
k+1 

b 

^o^i^-- •••  < y£+l  - 
d 

We suppose now that F is a function defined on H, and that 

we have the values of F at the corner points of the rectangu- 

lar grid defined by (3.5); i.e., 

(3.6) 
ij 

F/x v x  i = 0,l,...,k+l 

This is a total of N = (k+2)(i+2) data points. 

It is quite easy to show that there exists a unique poly- 

nomial p in the class ^V. -i « i  (cf« the definition (3.3)) 

which interpolates the gridded data given in (3.4)-(3.6).  In 

fact, p can be written down explicitly in terms of the one- 

dimensional Lagrange polynomials as 

k+1 i+1 
(3.7)  p(x,y) = E  E F. .L,(x)i: (y), 

i=0 j=0  
J 1   J 

are the usual one- where the  {Li(x)}0
+  and (L (y) }0 + 

dimensional Lagrange polynomials associated with the interpola- 

tion points  (
X
J ^   an^ ^y-^n ' respectively.  Interpolation 

of gridded data by polynomials has been discussed in various 

books and papers--we do not bother with a long list.  See e.g. 

Prenter [157] or Steffenson [186], More recently, there has 

been considerable work on Hermite and osculatory interpolation 

in several variables; see e.g. Ahlin [3], Haussman [99,101,102], 

and Salzer [168-170], 



3.3  Shepard's method.  In this subsection we discuss a method 

of Shepard [180] and some modifications of it.  The method ap- 

plies to arbitrarily spaced data, and the interpolating function 

can be written down explicitly. 

Let p be some metric in the plane, for example the usual 

distance metric.  Given a point (x,y), let r = p((x,y),(x ,y.)) 

for i = 1,2, .. .,N.  Let 0 < n < <».  Then Shepard's interpola- 

tion formula is defined by 

f 

(3.8)  f(x,y) = 

when r ±  0, all 1 

when r. =0. 

The formula (3.8) is defined for all points  (x,y)  in the 
2 

plane R .  It is clear ^rom the definition that it interpolates 

F.  at the data points (x ,y ), i = 1,2,...,N. the values 

The value of f(x,y)  at nondata points is obtained as a weight- 

ed average of all the data values, where the i  measurement 

is weighted according to the distance of  (x,y)  from the point 

(xi, yi). 

We shall briefly recount some of the properties of Shep- 

ard's formula.  First, by converting all of the terms to a 

common denominator, it can be shown that 

N 
(3.9)  f(x,y) = Z F A (x,y), 

i=l 1 1 

where 
N 
T[ [r.(x,y)]M 

j=l  J 

(3.10) A.(x,y) 
N  N 
^  ^ [r/x,y)]^ 
k=l i=l * 

1,2, ...,N 

These functions  satisfy 
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(3.11) A^x^y.)   =  8.., i,j  =  1,2,...,N. 

The  representation  (3.9)   is numerically more  stable  than the 

original  formula   (3.8). 

In view of  its definition,  we  see  that  the  function    f(x,y) 

constructed by Shepard  is not a simple polynomial or rational 

function.     It is clear,   however,   that except  for the points 

(x ,y ),   it is analytic everywhere in the plane.    Its behavior 

in the vicinity of the data points  (x ,y )     depends on the size 

of    |a.     It can be shown that for    0 < |a < 1,     f    has cusps at 

these points.     For    1 < n,   f    has  flat spots at the data points 

(i.e.,   the partial derivatives vanish there).    We also observe 

the interesting property that 

(3.12) min    F    < f(x,y)  <   max    F.. 
isiSN        " IgiiN    1 

We may also note that if the data came from a constant function, 

i.e.,    F    = c,   i =  1,2,,..,N,   then    f    is also the constant 

function    f ■ c. 

We now comment on the choice of    |i.    To get smooth surfaces 

without cusps,   it is desirable to take    1 < |i.    On the other 

hand,   if    |_i    is relatively large,   then the surface tends to be- 

come very flat near the data points and consequently quite steep 

at points  in between.    Experiments  (cf.   Gordon and Wixom [90], 

Poeppelmeir  [155],  and Shepard   [180])   seem to indicate that a 

choice of    M^ = 2    is perhaps a good tradeoff.   ([155] contains 

several examples showing the behavior as a function of    |i.) 

There are several drawbacks to Shepard's method  (3.8),  as 

pointed out by Shepard   [180] himself.    First,   if    N    is large, 

then there is a very considerable amount of calculation in- 

volved in evaluating    f(x,y)    at a particular point.    Secondly, 

the weights are assigned on the basis of the distance of points 

from    (x,y)   only,  not their direction.    Finally,   the flat spots 
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in the neighborhood of the data points is somewhat disturbing. 

The first of these objections can be met by defining a local 

version of the formula, which we shall do in section 4.5.  It is 

possible to construct an analogous formula which accounts for 

direction.  For details, see Shepard [180].  Finally, we briefly 

discuss handling the flat spots. 

Suppose in addition to the function values F.  at each 

point  (x >y.)  we also have estimates FX.  and FY.  of 

F (x ,y.)  and F (x.,y ). Then we may consider the function 
x i' i       y i 1 

N 
(3.13) f(x,y) = ZA.^yHF. + (x-x^FXj^ + (y-y^FYj. 

1=1 

It is easily checked that this function also interpolates,  and 

that 

(3.14) ^(x^y^  = FX.,       y^Yi)   = FYi,     i =  1,2,...,N. 

This property may be expressed in the assertion that if the 

data F.,FX .FY.  came from a plane surface F, then f will 
iii 

exactly reproduce this surface. To use formula (3.13) in prac- 

tice on the data-fitting Problem 1,1, we have to carry out a 

two-stage approximation process in which the first stage con- 

sists of some method for estimating the slope at each of the 

data points. 

It might be of practical interest in some cases to con- 

struct still a more sophisticated version of Shepard's formula 

which would exactly reproduce higher-order polynomial surfaces. 

One approach to doing this is to use the following lemma. 

LEMMA 3.1.  (Barnhill [15]). Let P and Q be linear projec- 

tions of some linear space of functions ^ into itself. Sup- 

pose that Q exactly reproduces the linear subspace E c: y; 

I.e., 

(3.15) Qp = p, all p e E. 
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In addition, suppose that {A. L  is a set of linear functionals 

on &,   and that 

(3.16) A Pf - A f, all f e 5P, i = 1,2, ...,m. 

Then the Boolean sum pro lector 

(3.17) p eg .= P + Q - PQ 

enjoys  the  function precision of    Q     (i.e.,   reproduces    E)  and 

the  interpolation properties of    P     (i,e.t   (3.16)  also holds 

for    P ©Q) . 

This  result permits  the construction of  interpolation 

schemes using Shepard's  formula which  reproduce higher-order 

surfaces.     For an example,   see Poeppelmeir   [155] where  Shepard's 

formula is combined with a certain local interpolation scheme 

which reproduces  quadratic surfaces.     In closing this  section 

we note  that Shepard's formula can also be interpreted as aris- 

ing  from weighted  least squares—see  section 5.1. 

3.4    Spline interpolation  (scattered data).     Suppose    X    is a 

linear space  of  "smooth"  functions defined on the domain    D, 

and let 

(3.18) U =  {f e X:     ftx.^)   - F.,     i =  1,2, ...,N}. 

U    is  the  set of  smooth functions which interpolate.     Now sup- 

pose that    0    is a functional on    X    which measures  the smooth- 

ness of an element  in    X--the smaller    0(f)     is,   the smoother 

f    is.    Then we may consider the following minimization problem: 

(3.19) Find    s e U    such that    0(s)   = inf 0(u) . 
ueU 

The function s will be the smoothest interpolant, and in view 

of the similarity with classical spline approximation, s is 

called a spline function interpolating F. The basic questions 

concerning spline interpolation center around existence, unique- 

ness, characterization, and construction. A quite general 
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abstract theory of spline Interpolation has been built up (see 

eg, Laurent [127] and references therein) .  In this section we 

quote some specific examples which can be used on Problem 1,1. 

Where X is a semi-Hilbert space, e(f) = ||f||, where ||-|{ 

is a seminorm on X, and N - {f e X: ||f|| = 0}, it is possible 

to show (under some additional mild conditions on X, see Duchon 

[72,73]) that problem (3,19) always has a solution which is 

unique up to an element in N, Moreover, it can be shown that 

there exists a reproducing kernel K defined on DxD such 

that 

N d 
(3,20)  s(x,y) = Ea K((x,y);(x1,yi)) + Eb^^y), 

i=l i=l 

where iPWi is a basis for N. Moreover, the coefficients 

[a,} and {b ) can be determined from the linear system of 

equations 

N d 
(3.21) E K((x.,y );(x ,y ))a + Z b P (x .,y ) = F , j=l, ... ,N 

j=l   J  J   1 1  1  i=l 
1 L J  J   J 

N 

i=1 1 K  1  1 

The development with  semi-Hilbert spaces  in Duchon   [72,73] 

is an extension of earlier work of Atteia   [10-12]  and Thomann 

[192-193]  using Hubert  spaces.     The essential difficulty in 

applying  the  general  result'   is  the construction of an appro- 

priate reproducing kernel.    We  turn now to some  specific exam- 

ples. 

Suppose X is the space of all functions on the rectangle 

D = H (cf. (3.4)) which have (distributional) derivatives up to 

order 2 which lie  In    L  (H) ,     For    f e X,   let 

(3.22) e(f)   =  //   |D^f|2 + 2|DxDyf|
2 +   JDyf |2. 
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The  reproducing kernel  in this case can be written down as an 

infinite  series  involving sin and cos,  and  the  space       N    is 

spanned  by  1,   x,   and  y.     Similarly,   if we   replace    H    by  the 

unit disc UD,   the kernel  can be computed as an  infinite  series 

(see Atteia   [10-12]  and Thomann   [192-193]).     Thomann considers 

computation of  these  splines  by approximating  the  infinite 

series--FORTRAN programs are also included. 

If we  replace  the  bounded sets    H    or    UD    by  the entire 
2 

plane    R      and  introduce an appropriate  space    X,   it  is possible 

to obtain explicit expressions  for the  reproducing kernel.   This 

is  the content  of Duchon   [72,/3].     In particular,   let    H 
2 be  the set of all  tempered distributions     f    on    R 

A 

s 

whose 

Fourier  transforms     f     satisfy    /|f|t    dt < oo.     Let    X        de- 

note  the set of all  functions which have derivatives up  to 
'v<S 

order m lying in H .  Our first example concerns the space 
20 

X  .  If we choose 0 as in (3.22), then the interpolating 

spline solution of (3.19) is of the form 

N   2 

(3.23)  s(x,y) = Zairi(x,y) log (r^y)) + b^ + b2y + b3. 
i=l 

2,h where r (x,y) = [(x-x.)^+ (y-y ) ]2. The coefficients are de- 

termined from the system (3.21) with d = 3, N = span {l,x,y}, 
2 

and K(z,w) = |z-w| log(z-w|,  Duchon refers to this type of 

spline as a thin plate spline since the expression 9 relates 

to the energy In a thin plate forced to interpolate the data. 
2 

This spline belongs to C(R ). 
21 

As a second example, suppose we consider X = X  .  In 

this case the solution of (3.19) with 0 given by (3.22)  has 

the form 

N 3 
(3.24)  s(x,y) = Z ai(ri(x,y))  + b^ + b2y + by 

Here    K(z,w)   =     |z-w|   .     Duchon   [72,73]   refers  to  these  splines 



15 

as pseudo-cubic  splines  because of  the analogy with the cubic 

splines in one variable.     They belong to C  (R) .     Pseudo quintic 

splines etc.  are also considered in Duchon   [72,73], 

A similar program has  been carried out by Mansfield   [133- 

13 7]   for some  spaces of smooth functions defined on a  rectangle 

H.     In   [136] she considers a space of functions    T '   (CU,ß), 

where    m    and    n    are positive  integers and    a<Q;<b,   c<ß<d. 

This  space  is actually defined by completion of a set of  tensor 

product functions with respect  to an appropriate inner-product, 

and we do not want  to define it precisely here.    A function 

f e T '   (Cü,ß)     has  the  following properties,   however: 

f(i,;i)   e C(H),     i = 0,l,...,m-l    and    j  = 0,1,.. .,n-l 

f(s-j-l,j)(X)ß) eAC[a)b] and f^'J'J^ß) eL2[a,b], 

(3.25)^ j = 0,l,...,n-l 

f^8'1"1^^) eAr.[c,d]  and  f(i'^ (a,y) eL2[c,d], 

i = 0,1,...,m-l 

f(m-l,n-l)   e AC(H)     and    f(m,n) e L2(H^ 

where AC stands for the space of absolutely continuous func- 

tions and where s = m + n. By constructing an appropriate re- 

producing kernel,   she is able  to solve problem  (3.19)  with 

(3.26)    e(f)   =  //[f(m'n)]2+nZ    /   [f(s"j'j)(x,ß)]2dx 
H j=0 a 

/Z    /   [f(i'S"i)(a,y)]2dy. 
i-0 c 

In [133], Mansfield carries out a similar analysis for a 

space of functions R *  defined on the rectangle H.  Here 

R' = L2[a,b] x L2[c,d], where L [a,b] is the usual Sobolev 

space of functions with absolutely continuous derivatives up to 
/Tn\      9 

order m-1, and with f   e L [a,b]. By constructing an 
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appropriate  reproducing kernel,   she now solves  problem   (3.19) 

with 

(3.27)     e(f)   = //[f(m'n)]2   .   ^    /   [f(m':')(x,c)]2dx 
H j 0  a 

m-I    d     , „ 

+    E    /   [f(i'n)(a,y)]2dy  . 
i=0  c 

The solution turns out to be i   piecewise polynomial of degree 

2m-1 in x and of degree 2n- . in y.  It is also in 

C   '   (H) .  For the particular case of gridded data, it re- 

duces to the tensor product of one-variable splines (cf. the 

following section).  Other more general definitions of 0 are 

also considered (with minor modifications on the one-dimensional 

integrals) . 

A more algebraic approach to constructing multidimensional 

spline functions (which also involves certain kernel functions) 

has been taken by Schaback [173-174]. His two-dimensional ker- 

nel function is obtained as a tensor product of one-dimensional 

kernels. 

3.5.  Spline interpolation (gridded data). The problem of con- 

structing interpolating splines in two dimensions with gridded 

data as in (3.4)-(3.6) is, of course, a special case of the 

general problems discussed in subsection 3.4.  The development 

of the gridded data case predated the more general development 

and, moreover, is considerably simpler.  There are a great many 

papers on two-dimensional polynomial splines and generaliza- 

tions. We do not have space here to discuss all of them in de- 

tail. We shall be content to quote some of the papers and to 

give a somewhat more complete discussion of polynomial splines, 

which are the most widely used splines for this problem. 

Some early papers dealing with two-dimensional interpola- 

ting splines include Birkhoff and de Boor [26], Birkhoff and 



Garabedlan [27], Price and Simonson [159], and  T'neilheimer and 

Starkweather [191].  In [26] certain Mcubic splines were intro- 

duced which were later studied in detail in de Boor [32].  The 

problem was to minimize 

b d 
(3.28)     /  /   [f(2'2)(x,y)]2dxdy 
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a c 

over all appropriately smooth functions  on the  rectangle    H 

which interpolate  the gridded data   (3.4)-(3.6).     It was  found 

that  the solution of  this problem was a certain bicubic  func- 
2 

tion with global smoothness    C  (H) .     This problem was genera- 

lized to minimizing 

b d 
(3.29)     e(f)   = / /   [f^n;(x,y)rdxdy,     ra = 2p,  n 2q 

a c 

in Ahlberg, Nilson and Walsh [1,2], whose solution involves 

certain higher-order polynomial splines. Since they are widely 

used, we give a short algebraic treatment here. 

The points {x^0  and (y^r,  define a partition of the 

intervals [a,b] and [c,d], respectively (cf. (3.5;). Suppose 

^'Wi   and 

are chosen arbi- 

now  that x.       < 1-m - <x,<a<b<x1   _< 
-    -1 - -    k+2 - 

l-n 
<...<y<c<d<y 

£+2 -  ' ^ yü+n-l 

trarily.     Let    (NT), be  the  B-splines associated with  the l  i-m 
x-partition,  and let the B-splines associated with the y-parti- 

tion be denoted by    (N.(y)},     .     For a complete discussion of 
j   l-n 

B-splines and their properties, see de Boor [36] in this volume 

(or [33]). Let 

(3.30) N^^y) = N°(x)N"(y), 

The linear space 

1-m,...,k and j = l-n,...,£, 

(3.31) .8= ^CV^i^M.n 

is clearly of dimension (k-nn) (ü+n) . We may now construct an 
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element in (3.31) which interpolates to ehe  gridded data. 

Since there are only (k+2)(£+2)   data  points on the grid (cf. 

(3.4)-(3.6), it is clear that if we use «8 to interpolate, we 

have 

(3.32) (km) (£+n) - (k+2) (£+2)   --    (k+2) (n-2)+(i+2) (m-2)+(n-2) (m-2) 

free parameters.  Thus, to uniquely define a spline, one must 

add additional conditions.  Recall that m = 2p and n = 2q.  Then 

we might add the extra conditions 

s(V,0)(x ,y ) = s(V'0)(x   y )=0, j =0,1,.. .,i+l 
(3.33) U  J K+i j     V = p, ...,m-2 

s(0^)(xi,y0) = 8(0^)(xi,yi+1)=0, i =0,1,.. .,k+l 
H = q, ...,n-2 

and 

s(V,M)rx v)-s(V^)Cx v  )-s(V^)fx   v) s   ^o'Vo*-3        (xo'yi+i;"s   (xk+i,yo; 

(3-34) (vu) 

M = q, .. .,n-l. 

These are called the natural boundary conditions, and it can be 

shown that the system of equations 

k   Z 
(3.35)  Z   E a N (x y ) = F    a = 0,1, .. .,k+l 

i=l-m j=l-n i:i iJ " ß    ^   ß = 0,l,...,i+l 

coupled with the conditions (3.33)- (3.34) provides a nonsingular 

system of equations for the coefficients {a,.}. This system 

has convenient bandedness properties if the equations are ar- 

ranged properly. The resulting spline is precisely the solution 

of the minimization problem (3.29). The boundary conditions 

(3.33)-(3.34) are the natural ones associated with the problem 

(3.29). However, it is also possible to specify lower-order 

derivative information along the boundary and also obtain a 

nonsingular system of equations. The resulting spline, called 

Type I, can also be shown to satisfy an appropriate minimization 



problem.     However,   for data-fitting purposes,   to use the  inter- 

polant with boundary derivative data  one would  first have  to 

perform a  first-stage approximation  to  find estimates  for the 

required derivatives. 

The best-known case of the above  spline interpolation is 

the case    m = n = 4,   i,e,,   bicubic  spline interpolation.     In 

this case  the surface constructed  is  a piecewise  bicubic with 
2 

global  smoothness    C   (H) .     The natural  boundary conditions  set 

second-derivative values to 0. Programs for computing natural 

bicubic interpolating splines can be found in the IMSL Library 

{117] in FORTRAN. FORTRAN programs for Type I bicubic splines 

can be found in Koelling and Whitten [121], where the required 

boundary infonnation is assumed to be input. An ALGOL program 

for computing Type I bicubic splines in which boundary data are 

automatically computed by fitting one-dimensional splines ap- 

pears  in Späth   [183], 

Bicubic  spline  interpolation has  been widely applied.     For 

some  references in  the Geology literature,  see eg,  Anderson   [7], 

Bhattacharyya   [22],   Holroyd and Bhattacharyya   [115],   Koelling 

and Whitten   [121],  and Whitten and Koelling  [206], 

Problem  (3,29)   has  been widely generalized in the  spline 

literature.     Instead of minimizing ordinary derivatives,   one 

may introduce general  linear operators,   and instead of dealing 

with point evaluation functionals,  more general  linear function- 

als may be permitted.     To  list some   (but  by no means all)   papers 

dealing with such generalizations,  we mention Arthur   [8,9], 

Birkhoff,   Schultz and Varga   [29],   de Boor  [34],  Delvos   [65,66], 

Delvos and Schempp  [68,69],   Delvos and Schlosser  [70],  Fisher 

and Jerome   [78,79],  Haussmann  [100],  Haussmann and Munch   [104], 

Munteanu   [143,144],   Nielson  [148,150],   Ritter  [164,165],  Sard 

['71,172],   Schoenberg   [176],  Schultz   [177,178],   Späth   [184,185], 

and Zavialov  [209-212],    On L-shaped region« and other polygons - 
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see Birkhoff [25] and Carlson and Hall [44-49]. 

We close this section by mentioning another direction of 

generalization which has led to a considerable development, the 

idea of spline blending.  These methods are useful for construc- 

tion of a surface which interpolates not only function values 

at isolated points but on the grid lines themselves; i.e., 

(3.36)  f(x,y ) = F(x,y.)   a<x<b and j = 0,1,... ,i+l 

f(x.,y) = F(x.,y)   c < y < d and i = 0,l,...,k+l. 

To use such blending methods one must have F defined on the 

grid lines.  Thus, the methods could be of value as second-stage 

processes. We do not have space to go into detail on spline- 

blended methods. We refer to the recent book of Bamhill and 

Riesenfeld [20] for a collection of papers on the subject and 

for further references.  See also the papers of Gordon [84-87] 

and Gordon and Hall [88]. Recently, considerable effort has 

gone into showing that blending methods also arise as solutions 

of appropriate variational problems; see the papers of Delvos 

[65], Delvos and Kosters [66], and Delvos and Malinka [67]. 

4. Local interpolation methods 

The interpolation methods discussed in section 3 were glo- 

bal in nature—that is, the value f(x,y)  of the constructed 

surface at any given point (x,y)  in D depends on the values 

of all of the data points. This generally means that to compute 

a representation for f one has to solve a fairly large system 

of equations, and to evaluate f(x, y)  one generally has to 

carry out a considerable amount of arithmetic. In this section 

we shall consider local schemes where the surface depends only 

on nearby data points. Then the construction will usually lead 

to (a possibly large number) of small systems of equations, and 

moreover, the evaluation of the surface at a given point will 
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usually involve very little  computation. 

Many of  the  schemes mentioned  in section 3  can be made  lo- 

cal  in nature by  the following simple approach.     Suppose  that 
d 

the  domain    D    is partitioned  into  subdomains:     D =    U D. ,     We 
i=l 1 

then seek a  surface in the  form 

(4.1)     f(x,y)   =  (f^y),       (x,y)   e D.,     i  = l,2,...,d. 

To construct each individual  f., we suppose that D  are do- 

mains containing D,, which contain only points which are "near" 

D..  Then we use the data (and only the data) in D,  to con- 

struct f..  Usually, we can choose D. = DJ •  1° most cases 

the most convenient choices for the subdomains D, are trian- 

gles and rectangles. We discuss these two cases first. 

4.1.  Triangular subregions (scattered data).  Suppose that we 

are given data at points P = (x ,y ), i = 1,2,...,N scatter- 

ed throughout the plane, and let D be the convex hull of 

these points.  It is more or less clear that by drawing lines 

from point to point we can construct a set of triangles with 

vertices at the P. which partition D.  It is also clear that 

given any set of points, this triangularization of D is not 

usually uniquely defined (see Figure 2 below for two different 

triangularizations of the same region) .  Moreover, as the fig- 

ure shows, some triangularizations are superior to others in 

the sense that they exhibit fewer of the less desirable long 

thin triangles. 

Figure 2. Triangularization 



The design of an algorithm  to divide a  region into accept- 

able  triangles with vertices at prescribed points is not as 

easy as it  sounds.    Two algorithms in  the  literature which are 

designed to give good triangularlzations can be found in Caven- 

dish   f50] and in Lawson  [128], 

The simplest approach to defining a local interpolating 

surface is to construct    f  (x,y)     to be of the form    a. +a-x + 

ay    in each triangle.    The data at the  three comers of the 

triangle determine the coefficients  for  that piece of    f     (the 

corresponding system will be nonsingular provided the triangle 

is nondegenerate).    This procedure produces a piecewise linear 

surface which,   in fact,  will  be globally continuous.     This  last 

property follows from the fact that along the sides of the tri- 

angle the functions reduce to straight lines joining the ver- 

tices.    This method has been used by several authors for data 

fitting,  e.g.,   Lawson [128] and Whitten  [206].    For some con- 

touring routines based on this  local interpolation scheme,   see 

section 8, 

If we desire to interpolate several sets of data defined 

on the same  trlangularization,   it may be more convenient to 

compute Lagrangian functions rather than to compute the surface 

in each triangle separately.     In particular,  it is clear that 

we can construct functions    (0.(x,y)),    with the property 

(4.2)     0j(xi,y1)  =  B i,j  =  1,2, ,,,,N, 

These functions can be constructed as pyramids in   such a 

way that the function   0.    has support only on the triangles 

surrounding the point    (x.,y.)     (see Figure 3).     In terms of 

these Lagrangian functions,   the interpolating surface is given 

by 
N 

(4.3)     f(x,y)   =    Z F.0.(x,y) 
j=l J  J 
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Figure 3.    A Lagrange Element 

The Lagranglan approach to local interpolation is very 

reminiscent of the  finite element method in which the  solution 

of an operator equation is sought in the form of a linear com- 

bination of a set of  functions  (called elements)  with the pro- 

perty  (4.2).     (See e.g.,  Prenter  [157],   Schultz   [179],  or 

Strang and Fix  [188].)    There is no need to restrict the ele- 

ments  to be piecewise linear functions--we may use higher-order 

polynomials,   rational functions,  or even more complicated func- 

tions.     In fact,   if we are careful in the construction, we may 

be able to construct elements with small support but higher 

global smoothness. 

There are a great many papers in the finite-element litera- 

ture concerned with defining convenient smooth elements (La- 

grangian functions with small support).    To mention a few,   see 

Barnhill,   Birkhoff,   and Gordon  [16],  Bamhill and Gregory  [17, 

18],   Barnhill and Mansfield   [19],   Birkhoff and Mansfield  [28], 

Bramble and Zlamal   [39], Goel  [83],  Hall   [94],  Mitchell  [141], 

Mitchell and Phillips   [142], Nicolaidis   [146,147],  Zenisek  [213], 

Zienkowicz   [214],  and Zlamal   [215-217].     The books on finite 

elements of Aziz   [13],  de Boor  [35],   Strang and Fix  [188],  and 

Whiteman  [198]  should also be consulted. 
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The construction of elements with higher-order smoothness 

becomes increasingly difficult. For example, it is shown in 

Mansfield [137] that to get an element with support on the tri- 

angles surrounding P. and with global continuity C (D), it 

is necessary to use polynomials of degree 5 at 1east, (Matters 

are somewhat simpler on regular triangularizations, see subsec- 

tion 4.2 below.) 

We close  this subsection by mentioning that it is also pos- 

sible to perform interpolation using elements based on triangles 

to data which also involves derivatives,   or In analogy with the 

blending methods,   to data which Includes  function values along 

the edges of the triangles,     (See e.g.,   Bamhlll,   Blrkhoff,  and 

Gordon   [16],   or Bamhlll and Gregory   [17,18].)     These methods 

are not directly applicable to the scattered data Problem 1.1, 

but may be useful as  second-stage methods. 

4.2.    Regular trlangularlzatlons.    When the data is distributed 

such that the region can be triangulated Into a set of congru- 

ent triangles,   then It is extremely advantageous to use the La- 

grange approach.    In particular.   In this case we can find an 

element    0    with value 1 at  (0,0)   such that all other elements 

are translates of    0.     In this case,     f    takes  the form 

N 
(4.4) f(x,y)   =    E F 0((x,y) - (x ,y )). 

j=l  J J    -1 

We Illustrate this with a couple of examples. Suppose that 

we are given data at points chosen from the collection 

(4.5) "x = Ui,j)}i jeZ U {(1 + ^^+^)}. jeZ ,  Z = (integers). 

These points lie on the comers of a triangular grid as shown 

in Figure 4. 

It is shown In Zwart  [218,p.673]   that there exists a func- 
1    2 

tlon    0 e C  (R )    which Is 1 at the origin and 0 at all other 

points in    Q,  and has support on the shaded region in Figure 4.   - 
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Figure 4.     A Regular Triangulartzation 

This function is constructed as a piecevise quadratic polyno- 

mial. A similar element has been constructed by Powell [156] 

(the figure on page 267 of [156] should be rotated 45° to see 

this). 

To give another example,   suppose that we consider the set 

of points    n„    which lie at the vertices of the grid defined by 

equilateral triangles shown in Figure 5. 

Figure 5.    Another Regular Triangularization 
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It  is shown in Fredrickson  [81]   that there exists a function 0 

which has value  1 at  the origin and value 0 at all other points 
2    2 

in   0 .  The  function    0    is in    C  (R ),   consists of piecewise 

quartics,   and has  support in the  region shown in Figure 5. 

Fredrickson also constructs a piecewise cubic element with the 
1    2 same  support    but which is only    C  (R ) .     For right triangles 

see Carlson and Hall   [44]. 

4.3.     Rectangular subregions.    In this  section we suppose that 

we have data given at points lying on a rectangular grid as in 

(3.4)-(3.6),   and consider local  interpolation methods.    The 

simplest approach here  (cf.   the  triangularization case)   is to 

construct a  separate  bilinear function    f(x,y)   = a..   + a^x + 

a3y + a^xy    in each subrectangle,  H      =   t3^»^.,.^ x ^y->y\+i^> 

using the  four comer values uo determine the coefficients. 

Since the bilinear patches reduce to linear functions on the 

grid lines,   the global surface is    C(R) . 

Several authors have considered constructing functions on 

each of the    H  .     using higher-order polynomials.     This requires 

additional information in addition to the four corner values. 

For example,   if one  seeks a bicubic 

3       3 
(4.6)     f(x,y)   =    Z      Z ax y-, 

i=0   j=0  1J 

AJ 

there are 16 coefficients to determine.    These could be deter- 

mined by the four corner values,   plus  the values of    f ,   f - 7 x' y' 
and f   at each comer. To determine these, one must perform Xy 7 r 

some first-stage process.    For some approaches  to this,   see 

Akima   [5],   Messing,   et al   [114],  and Shu,   et al   [181],    A FOR- 

TRAN program for Akima's method can be  found in   [6],    Nonpoly- 

nomial patches have also been considered;  e.g.,   see Birkhoff 

and Garabedian  [27]. 

The Lagrange   (finite element)  approach can also be used in 
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the case of rectangular gridded data.  In particular, if we can 

construct a function satisfying (4.2) with local support, then 

the surface  f given by (4.3) will interpolate and the method 

will be local in character. As before, the Lagrange approach 

is especially convenient if the grid is regular, i.e., if all 

subrectangles H. .  are congruent. To illustrate this, suppose 

that the H . are actually the unit squares; i.e., the data 

points lie in the set 

(4.7)  n3 = {(i,j)} i,j e Z, Z = {integers}. 

To get a quadratic C  element, we may simply rotate the ele- 

ment of Zwart [218] considered in the last section by 45 degrees 

(cf. Figure 4), or we may take the element of Powell [156]. 

4.4.  Parametric representations.  The methods discussed in the 

last section is concerned with data given on a rectangular grid. 

By using parametric representations, it is possible to construct 

similar local interpolating surfaces for data given at the cor- 

ners of any partition of D consisting of quadrilaterals.  In 

this section we briefly describe how this might proceed. 

Suppose Q is a particular quadrilateral subregion of D 

of interest.  In addition, suppose that x(s,t), y(s, t), and 

z(s,t) are functions defined on the unit square U = [0,1] x [0,1] 

with the properties that as  (s,t)  runs over the boundary of 

U, (x(s, t) ,y(s, t)) runs over the boundary of the quadrilateral; 

the four comers of U correspond to the four comers of Q; 

and z(s, t)  takes on the desire J data values at the four cor- 

ners of U.  In this case, the triple  (x(s, t) ,y (s, t),z(s, t)) 

provides a parametric representation of a piece of surface de- 

fined over Q interpolating the data. 

The problem of constructing parametric representations of 

interpolating functions has been considered in a number of pa- 

pers. Several papers on these methods and a host of references 

can be found in the book of Barnhill and Riesenfeld [20]; see  _ 
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also the  survey paper of Shu et al   [181],     Such surfaces are 

sometimes called Coon's  surfaces,   cf.   Coons   [59],   and are of 

considerable interest in  the  field of computer-aided geometric 

design.     To mention just a  few of  the actual papers,   see Ahuja 

and Coons   [4],  Eamshaw and Youille  [74],  Ferguson  [77],  Hayes 

[107],  Hosaka   [116],  and Mangeron  [132]. 

There also has been some effort directed towards construct- 

ing elements  (Lagrange  functions)  associated with other less 

regular subsets of the plane.    We mention,   for example,   the 

work of Ciarlet and Raviart  [55], Wachspress   [194,195],  and 

Zlamal   [217]     in    which    elements are constructed for domains 

involving curved edges. 

4.5.    Local Shepard methods.    It is possible  to modify the meth- 

od discussed in subsection 3.3 to make it local.    For example, 

following Shepard   [180],   suppose we fix   0 < R   and define 

(4.8)    ^(r) 

1/r 0 < r< 3, 

<II(R-1)2'      R/3<r<R, 
0 R    < r 

This function is continuously differentiable and vanishes iden- 

tically for    r < R. 

r 
Now with r. as in (3.8), we define 

(4.9)  f(x,y) = < 

N 

Z F [iKr,)] 
i^l 1   1 

N 
E 
i=l 

[tC^)] 

n 

n 
when r ^ 0, all i 

when r^ 0, 

Formula (4.9) is defined at all (x,y)  in the plane R . 

By definition it interpolates the values F, at the data 

points  (x.,y.), i = 1,2,...,N, The values at non-data points 

are obtained as weighted averages of the data values F^, but 
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only  those which  lie at points within a distance of    R        of 

(x,y).     Thus,   the  formula is  local. 

To use  this method in practice it is necessary  to choose 

a reasonable value  for    R.     The aim is  to  find    R    so  that for 

every     (x,y)    a  reasonable number 01 data points will  fall in 

the disk centered at     (x,y)     of radius    R    .     It would also be 

possible  to let    R    depend on    (x,y),   i.e.,   to use different 

values of    R    in different subregions of    D. 

5.     Global approximation 

As mentioned in the introduction,   frequently the data does 

not warrant constructing an interpolating function  (e.g.,  be- 

cause of errors).     In such cases it may be preferable  to con- 

struct a surface which only approximates the data.     In this sec- 

tion we discuss some global approximation methods. 

5.1.     Polynomial least squares.    The general theory of discrete 

least-squares  fitting is very well known.    To briefly review, 

suppose that    {0.L     are    n    given functions on    D.     Define 

N 
(5.1)  «(a) =  Z 

i=l 

n 
Z a.Mx ,y.) "F. 
j=1 j J i i   i| 

where a = (a.., ..., 

lern is to find a* 

T a )   is any vector 
n 
such that 

I  .     Then the prob- 

(5.2) $ (a*)   = min $ (a) . 
a 

The corresponding function 

n 
(5.3) f(x,y)   =    Z a* 0.(x,y) 

j=l J    3 

is called the discrete least-squares approximation of the data 

{F.)l. Usually one takes n considerably smaller than N. In 

this section we briefly discuss least squares using polynomials. 

Before doing so, however, we make a few general remarks about 



solving the general least-squares problem. 

There are several approaches to solving (5.2),  Perhaps 

the neatest is the case where the {0.},  are orthonormal with 

respect to the inner-product 

N 
(5.4) (M) = E 0(xi,yiH(xi,yi). 

i=l 

Then the solution of (5.2) can be written down explicitly as 

n 
(5.5) f(x,y) = E F.0.(x,y). 

j=l J J 

A second very well-known approach to solving (5.2) is via 

the normal equations 

(5 .6) A*A a = A*F , 

T where    F =  (F.,...,? )       is the vector of data values,  and where 

(5.7) A = (vvyi>>A;i=i- 

In some cases the normal equations are a perfectly acceptable 

way to compute least-squares approximation, but in other cases 

the system (5,6) may be ill-conditioned (or even singular--cf. 

the following subsection for spline least squares). This ap- 

proach is also not convenient should side conditions be desired 

(e.g., by imposing actual interpolation at some of the values). 

For more on the normal equations, see any book on Numerical 

Analysis, 

A more modem method of solving least-squares problems is 

to use general matrix methods. Specifically, consider the ob- 

servation equations 

(5,8) Aa = F, 

It can be shown that by applying a series of matrix transfor- 

mations to this system, one can obtain a set of equations giving 

the vector a*.  For a complete description of methods of this _ 
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type see Lawson and Hanson [129] or Stewart [187]. Matrix 

methods are quite amenable to the adding of side conditions and 

can also be designed to take account of rank-deficiency of the 

matrix A (which corresponds to the case of singular normal 

equations) . 

Polynomial discrete least-squares fitting has been widely 

used for fitting surfaces to data, both scattered and regular. 

Several authors have developed algorithms for polynomial dis- 

crete l>?9.8t-squares fitting if scattered data by constructing 

orthononnal polynomials (e.g. by Gram-Schmidt orthonormaliza- 

tion).  See, for example, Cadwell and Williams [42], Grain and 

Bhattacharyya [61], and Whitten [201,202]. The latter contains 

a FORTRAN program. 

When the data are more regularly distributed, polynomial 

least-squares fitting can often be simplified.  For example, if 

the data lie on a grid as in (3,4)-(3.6), then the desired or- 

thogonal polynomials are simply products of the one-dimensional 

orthogonal polynomials associated with the one-dimensional inner 

products corresponding to (x.L  and {y.L   respectively; e.g., 

see Gadwell [41] or Clenshaw and Hayes [56], as well as the sur- 

vey papers of Hayes [105,108,109]. 

There are also special methods for handling data which are 

not on a grid but instead lie on parallel straight lines. For 

example, Gleushaw and Hayes [56] have developed methods using 

expansions in terms of Tchebycheff polynomials (although the 

method actually only produces an approximation to the least- 

squares fit rather than the actual minimum) . 

Polynomial least squares can also be interpreted as multi- 

dimensional regression as practiced by statisticians, e. ., 

see Effroymson [75].  For example, if we are trying to fit a 

function in the form 
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dx    dy 
f(x,y) L      ^    a     x  yJ, 

i-0   j=0       J 

then by defining new variables  by 

V = 0,1,. 
M  -  0,1,. 

V n 
zv(dy+i)+n - x y' 

,,dx 
.,dy 

we can write 

f(x,y)  = z Vi' 
1=0  1 

d =  dxdy + dx + '!v, 

and  the problem becomes  one of  fitting a linear  function in 

several variables. 

We close this  section by observing that  in some cases  it 

may be desirable to consider weighted least squares.     In parti- 

cular,   if we have positive weights    w.   > 0,   i =  1,2,...,N,   then 

we may replace    Q    in  (5.1)   by 

v* 
N 
Z w 

i=l 1 
^ajflij(x1,yi)-Fi 

It is interesting to note that the interpolation formula 

of Shepard discussed in section 3.3 can be interpreted in terms 

of weighted least-squares fitting. In particular, fix (x,y) 

in D, and let r.(x,y)  be the distance from (x,y)  to the 

point (x.,y,)  as before.  Now set w = r. , and consider 

least-squares approximation by a constant c, using these 

weights. Then one easily computes that the least-squares choice 

of c is 

N N 
E w,F 

i i 
ZF-^ 

iri 
c = 

N 
Ew, E -^ 

This approach was adopted by Pelto,  Elkin? and Boyd   [152]   (as 

pointed out to me by Chuck Duris). 
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5.2,     Discrete  least-squares   fitting by splines.    As outlined 

in the previous subsection,   discrete  least squares can be car- 

ried out with any finite  set of  functions.     It is not surpris- 

ing  that a number of authors have  tried using tensor product 

splines.     See,  e.g.,   Halliday,   Wall,   and Joyner  [96],  Hayes and 

Halliday   [110],  Jordan   [119],   Hanson,   Radbill,  and Lawson   [97], 

and Whiten  [199].  Hayes and Halliday have developed both ALGOL 

and FORTRAN programs.     It is,   on the other hand,  perhaps  some- 

what surprising that least-squares fitting with splines can be 

somewhat problematical.    We briefly discuss the method. 

Suppose that    H=   [a,b]x[c,d]     is a rectangle containing 

the domain    D    of interest.    Let    (x., }n      and    ty.L      be parti- 

k+1   i+1 tions  of     [a,b] and   [c,d],   respectively,  and  let  {N,.},       , 
ij i-m,i-n 

be the tensor product B-splines discussed in section 3,5. We 

consider discrete least-squares fitting using these (k+m)(i+n) 

B-splines. 

To explain how difficulties can arise with spline least- 

square fitting, we observe that it is quite easy for the matrix 

A in the observational equations (5.8) to be rank-deficient. 

On a trivial level this can happen if for some B-spline N, ., 

none of the data points lies in its support. This deficiency 

can, of course, be easily removed by dropping this particular 

B-spline from the set being used to approximate.  But rank de- 

ficiency can also occur in more subtle ways because of the 

local support properties of the functions. This problem can be 

overcome with properly designed algorithms. See Hayes and Halli- 

day [110] for a careful discussion of spline least-squares fit- 

ting.Lawson and Hanson [129] include a general discussion of 

how to handle rank deficient least-squares problems. 

If we operate in terms of the normal aquations, then it 

may well occur that the normal equations are in fact singular. 

This is again due to the local property of the B-splines com- 
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bined with the discrete  Inner-product.     Even when it  is not 

singular,   the set of normal equations  can be ill-conditioned 

(even  though it  is a  relatively  sparse matrix with a kind of 

repeated  band-strueture) , 

Discrete least squares can also be carried out with vari- 

ous  finite dimensional  linear spaces  of blended functions.     For 

an extensive  study of  such methods,   see  the dissertation of 

Doty   [71], 

5.3,    Discrete £.  and i    approximation. Instead of performing 

discrete   least squares, we may consider the following discrete 

approximation problem:    Given functions {^.L    defined on    D, 

we  seek    a*    so that 

N      n 
(5.9)    *(a)   =    Z  | Z a 0  (x ,y.)   - F   | 

1=1 j = i J  J    1    ^^ 1 

is minimized.    Alternatively,  we may minimize 

n 
(5,10) *(a) = max | Za0 (x ,y ) - F 1. 

ISisN j = l ■>  3    *-    * 1 

These are the usual iL  and best approximation problems. 

Both of these problems can easily be reformulated as linear 

programming problems for the determinations of the optimal a* 

(of. Rabinowicz [160,161] or Rosen [167]),  Reasonable choices 

for the  {0.} would be low-degree polynomials if D is small, 

or possibly spline functions. 

Discrete approximation methods of this type have had rela- 

tively little exposure in the literature.  For some results 

using tensor product splines in the £      problem, see Rosen. 
00 

The optimal a* was obtained there by using the standard sim- 

plex method on the associated dual linear programming problem. 

The £      problem can also be solved by using Remez-type 
00 

algorithms.    For an algorithm which performs generalized 
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rational approximation (and thus can also be used for polynomi- 

al approximations) see Kaufman and Taylor [120]. Theoretical 

considerations for Tchebycheff approximation in several vari- 

ables can be found in Collatz [58] or Weinstein [196], for ex- 

ample. 

5.4.  Spline smoothing (scattered data) .  In this section we 

consider some minimization problems similar to those discussed 

in section 3.4, but where the class of admissible functions is 

not required to Interpolate and where the functional to be mini- 

mized includes a term measuring how close the function comes to 

fitting the data. To be more specific, suppose X is a linear 

space of "smooth" functions and that 6 is a functional on X 

which measures the smoothness of an element in X. Suppose in 

addition that E is a functional defined on X which measu^s 

how well a function fits the data. Then the spline-smoothing 

problem is the following: 

(5.11) Find s e X such that p(s) = inf p(u), 
ueX 

where 

(5.12) p(f) = e(f) + E(f). 

The abstract theory of spline smoothing has been well 

developed; see, e.g., the book of Laurent [127] and references 

therein. To illustrate the ideas, we briefly discuss a couple 

of examples. We suppose as in section 3.4 that X is a semi- 

Hilbert space and that 9 is a seminonn on X with N = 

{f e X: 0(f) =0}. We also suppose that X is actually a 

function space defined on a domain D, and that the point eval- 

uators at {(x,,y.)), are bounded linear functionals on X. 

We define 

N ? 
(5.13) E(f)   = p    E  [f(x ,y ) -F.r, 

1=1 1    1 1 

where    p    is a fixed positive constant.  Then it can be shown 
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(cf.   Duchon   [72,73])   that  the  solution of  Problem  (5.11)   is a 

spline which can be written in the  form  (3.20), where now the 

coefficients are determined  from  the  linear system 

N d 
£ K((x ,y.);(x1,yi))ai+  L Vi^j^ +a

j/p = F
j> 

j   -   1, id, . . ., N, (5.14) 

1=1 1 K    1    1 
k = 1,2,...,d. 

As  in  section 3.4,   the application of  this method depends 

on constructing a reproducing kernel    K.     If    0    is chosen as 

in   (3.22),  Atteia   [10-12]  and Thomann   [192,193]  considered 

spline smoothing for spaces of smooth functions on the rectangle 

and on the disc  (the latter even contains ALGOL programs). 
2 

Duchon   [72,73]  considers similar problems defined on    D = R . 

A similar spline-smoothing problem has also been consider- 

ed by Plvorarova  [154], where    0    is  taken to be 

(5.15) 0(f)   = //[D^f]2 +  [D2f]2. 

See also Kublk  [123]. 

5.5.     Smoothing splines   (gridded data).     In section 3.5 we con- 

sidered several minimization problems whose solutions led to 

interpolating polynomial splines   (and generalizations) .    In con- 

junction with the development of interpolating splines for 

gridded data,   there was a concurrent development of smoothing 

splines.     For example.   Instead of minimizing the Integral    0 

In  (3.29)   over appropriate smooth interpolating functions, we 

may minimize Instead    p(f)   = 0(f)   + pE(f), where    E    Is given 

by 
k+1 ^+1 - 

(5.16) E(f)  =   E     S [f(x    y )  - F..r. 
1=0 j=0       1    J 1-1 

For results in this direction,   see e.g.  Nlelson  [149,150]. For 
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0 given by (3.29), the smoothing splines are again polynomial 

splines. Again, more general linear differential operators and 

more general linear functionals can be considered. 

5,6.  Continuous least squares.  The method of continuous least 

squares is not directly suited to fitting surfaces to discrete 

data, but it can be of use as a second-stage process, so we 

briefly review It. We suppose now that F is a function de- 

fined on D which we wish to approximate, and that (^Ji are 

given functions on D. We define 

(5.17)  (f,g) = // f(X,y)g(x,y)dxdy,  i|f||2 = (f,f) 
D 

and 
n        ~ 

(5 .18) «D (a) 1 E a.0. - F| 
j = l 

J J 

The problem is to find a* to minimize ^(a). The solution Is 

given by solving the normal equations 

(5.19) Aa = r, 

where 

A=(^V)i,j=i 
and r = [^F)""^F)lT- 

For reasonably nice approximating functions it is often 

possible to compute the normal matrix exactly. In practice, 

the difficulty lies in evaluating the right-hand sides. Gener- 

ally a quadrature formula is required for this. One advantage 

of the method would be that if several data-fitting problems 

are to be solved using the same set of approximating functions, 

one can do the work of Inverting the normal matrix just once 

and re-use the result as many times as desired. 

Reasonable choices for the approximating functions Include 

polynomials, or better yet, tensor product B-spllnes as In 

(3.30) . Here the singularity problems do not crop up for the 

splines because we are integrating Instead of summing over 



38 
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finitely many points. The normal matrix in this case has a kind 

of repeated band structure. The entries can be computed exactly, 

e.g., by Gaussian quadrature (cf. de Boor, Lyche and Schumaker 

[38]). Uniform best approximation by tensor products of splines 

has also been considered, e.g., see Sommer [182]. 

6. Local approximation methods 

As pointed out at the beginning of sei :ion 4, there are 

many advantages which accrue if one uses local methods rather 

than global ones.  In this section we discuss some local approxi- 

mation schemes. 

6.1. Patch methods. As in the case of interpolation, the sim- 

plest approach to obtaining local approximation methods is to 

partition the domain and to define a surface (patch) on each 

subdomain separately. In particular, suppose that D = U{D.).., 

where D  are disjoint subsets of D. Then we may seek f in 

the form 

(6.1)  f(x,y) = {fi(x,y), (x,y) e D^  i = 1,2,...,d. 

To construct the patch f. (x,y), we might use the data available 

in the subregion D . In certain cases, however, it may well oc- 

cur that no data at all are available in the set D.. In this 

case we may choose a somewhat larger set D. of points "near" 

D , and use the data in D,  to construct f.. For any given 

method, it should be possible to make the choice of D. adaptive 

so that the size of D. is kept as small as possible consistent 

with the amount of data desired for the construction of f.. 

The patch method outlined above can be used with any of the 

approximation methods discussed in section 5. For example, one 

might choose to use polynomials (of low order), and to do dis- 

crete least-squares approximation. Or, one might use i. or 

Ü  approximation or some other convenient space (e.g. splines) 
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instead of polynomials.  The main point is to keep the size of 

each individual patch problem (ind thus the size of the corre- 

sponding system of equations) small. We may have to solve a 

lot of systems of equations, but each will be small and fairly 

we11-conditioned. 

To illustrate how the adaptive feature might be implemented, 

suppose that the domain D of interest has been enclosed in a 

rectangle H and that a partition of H is defined by H = 

U(Hlj}i=o',J=0 ' with Hij = [Vxi+l
]x tyj'yj+l

] for 80me 

(6.2) x0 < x1 <. .< x 
k+1 

L,   c yo<yi<-"<Vi = d- 

Now suppose that we want to do discrete least-squares fitting 

using a patch of the form f. . (x, y) = a + bx + cy on H . 

In this case it would be reasonable to require that at least 

3 pieces of data should be used to construct f.*«  1^ H s 
~ ■' 

does not contain 3 pieces of data, we expand H. . to H,. by 
'     r     ij     ij 

adding all bordering rectangles.  If this does not contain 

3 pieces, we again add all bordering rectangles, etc. We then 

compute the discrete least-squares polynomial using the data in 

H. ., but then we use the resulting function only in H. .. The 

process may be repeated to define each required patch. This 

kind of adaptive algorithm is very easy to program. 

In using patch mcjodb lo  get local interpolation methods, 

we concentrated on methods using data at comers of triangles 

or rectangles, and by choosing appropriate foims for the patches, 

it was possible to get the individual patches to match together 

to give a continuous global surface (or with more sophisticated 

patches, even C (D) or higher), Here, however, where the in- 

dividual patches are determined by approximation, it is nof: 

very likely that the patches will match up, and the global sur- 

face will generally not even be continuous. For most applica- 

tions, this is a serious drawback. However, as we shall see in 
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section 7, patch approximation methods can still be very useful 

as first-stage methods. 

6.2.  Direct local methods.  In this section we discuss some 

local methods in which the approximating surface is constructed 

directly from the data without solving any systems of equations. 

It will be convenient to pose a more general problem than pre- 

viously considered. 

Let y be a linear space of functions defined on D, and 

suppose that  (\)i  are linear functionals defined on y. Let 

N 
{0 }  be a prescribed set of functions defined on D. Then we 

are interested in approximation schemes of the following form: 

N 
(6.3) QF(x,y) = E A F0 (x,y). 

i=l i 

We can think of this as a surface-fitting problem where the 

data are given by F = A.F, i = 1,2, ...,N.  Given the data, 

we can write the approximation down immediately. 

We also observe that if the 0.  have support on small sub- 

sets of D, and if each A  also has support on the same set, 

then the formula (6.3) is local. For example, if we take A 

to be point evaluation at the point (x.,y,) and 0. (x,y) to 

be a function with support in a neighborhood of (x ,y,), then 

the approximation formula simply becomes 

N 
(6.4) QF(x,y) = E F 0 (x,y) . 

i=l 

This is very reminiscent of the Lagrange form of interpolation 

(cf. (4.3)), but unless the 0.  are taken to satisfy (4.2), 

QF will not in fact be an interpolant. For this reason, for- 

mulae of the form (6.4) (or more generally (6.3)) are sometimes 

referred to as quasi-interpolants. Local quasi-interpolants 

of the form (6.3) can be constructed simply by defining the 
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N 
functions  f^.K  with local supports.  If each of these is 

continuous (or smooth), then QF will also be. 

Although a host of quasi-interpolants can be constructed 

as outlined above, considerable care must be exercised in order 

to gat  methods which give good accuracy (when the original 

function F is smooth). As observed earlier, this is directly 

related to making the method exact for polynomials, i.e., such 

that QP = P for all P in some class of polynomials. 

To construct methods of the form (6.3) which apply to 
N 

scattered data, it is necessary to construct appropriate [0 ],. 

While a host of methods can be constructed this way, it is not 

so easy to choose the 0.     to make the method exact for poly- 

nomials (which, as we remarked earlier, is directly related to 

how well the method will approximate smooth functions F). To 

get methods which do have a reasonable degree of exactness (and 

a correspondingly good error bound for smooth functions), it is 

easier to first choose the {0.K, and then try to find suit- 

able  (A }.. While this generally rules out using point evalu- 

ators at scattered data, it is possible to construct methods 

based on point evaluators at appropriate points, and such meth- 

ods can be useful as second-stage approximations. 

To illustrate these ideas, we consider construction of 

local spline approximation methods following the general treat- 

ment in Lyche and Schumaker [131]. Suppose D is enclosed in 

a rectangle H, and that H is partitioned into subrectangles 
k   £ 

by a grid as in (6.2). Suppose that {N. .). ,' ',   are the r ij  i=l-m,1-n 
tensor product B-splines associated with  this partition  (cf. 

(3.30)).     We are now interested in approximation schemes of the 

form 
k i 

(6.5)     QF(x,y)   =        Z E      A   FN   . (x, y) . 
i=l-m j=l-n    ^    1:I 

In particular, we are going to consider the question of 
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constructing formulae of this type which are exact for the class 

of polynomials P        ,  with some fixed  1 < v < m and 1 < u < n. r    J v,u —  -       —  - 
This problem has a very simple algebraic solution if we decide 

to construct each A^ . in the form 
ij 

v  u 
(6.6) A  -- Z  Z a..  Ax. Aj. , 

ij  v=l ^1 1JV^ ijv iiyi 

where the  {A.. }  ,  and (A^. ) n  are linear functionals ijv V=l       ijji |i=l 

which apply to functions of x and y alone, respectively.  It 

can be shown (cf. [131]) that given any  (A,. } and  {A.. } sa- 
ijV       ij|i 

tisfying mild independence assumptions, there exist coefficients 

{cr .  }  such that the formula (6.5) will be exact for P    . 
ijVn v  ' vu 

In fact, these coefficients can easily be explicitly computed. 

To give one example, suppose 

(6.7) < 
^ =      &T) '      l = l-m,...,k 

Then we obtain 

k    £ 
(6.8)  QF(x,y) = E    I    F(f., r, )N  (x,y), 

i=l-m j=l-n  1 J l2 

a  formula which exactly reproduces  the bilinear polynomials fi.   .. 

This is  the multidimensional  (tensor product)  version of the 

Variation Diminishing   method of Marsden and Schoenberg;   it was 

studied  in some detail in Munteanu and Schumaker   [145].     This 

formula is closely related to the Bezier-type surfaces construc- 

ted in Riesenfeld   [163]   (see also Gordon and Riesenfeld   [89]). 

We  should observe  that  the way formula   (6.5)   now stands,   it 

may involve information on    F    which is  taken from data outside 

of the domain    D.     This  situation can be  rectified as  follows: 
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Let 

(6.9) n = {(i,j):  support A. . PI D not empty) . 

Then it can be shown [131] that the method 

(6.10) QF(x,y) = ZZ   A FN  (x,y) 
(i,j)en i2    iJ 

remains exact as long as all functions are restricted to D. 

To get higher-order methods, depending only on point eval- 

uations, we proceed as follows. Choose 

(6.11) 
X. < T..  < X,   , 
i   ijv   i+nr 

y • < T4 • < y ■   } 

1,2,,..,v 

1,2,...,M, 

for i = 1-m, ..,,k and j = l-n, ...,i.  Then if we take A' 

to be point evaluation at x?.  and A. 
x 

rijv 1JH 

ijv 

to be point evalu- 

ation at Tj, , the coefficients in (6,6) are easily computed. 

Hints on where the T'S should be placed within the support 

of the B-splines are given by the error analysis in [131], 

We close this section with some historical remarks on the 

development of local approximation schemes in two dimensions. 

Early papers include Babuska [14], de Boor and Fix [37], and 

Fix and Strang [80],  For some methods involving triangular 

partitions, see Fredrickson [82], Quasi-interpolants were 

constructed in de Boor and Fix [37] using point evaluation 

data, but including derivatives. We have followed Lyche and 

Schumaker [131] where general linear functionals are consider- 

ed, and where in particular, methods can be constructed using 

only point evaluation of the function,  (Local integrals etc. 

would also be possible.) The papers [37] and [131] both con- 

tain extensive error bound analyses.  It is striking that these 

local spline approximation methods give optimal order error 

bounds for smooth functions. 
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7.  Two-stage proc.psses 

Many of the methods we have discussed in this paper are 

only applicable when the data are regulany spaced (and in fact, 

many surface-fitting methods require specification of derivative 

data as well as function values).  Such methods cannot be ap- 

plied directly to the scattered data-fitting Problem 1.1. On 

the other hand, some of the most convenient local interpolating 

and local approximating methods which do work for scattered 

data produce surfaces which are not globelly smooth (or even 

continuous) .  Thus, it seems natural to consider the possibility 

of constructing two-stage processes in which the first stage 

uses the scattered data to construct an approximation g, while 

the second stage uses g to generate data for constructing a 

surface f (with desirable properties, such as smoothness). 

Since it is quite clear how various methods discussed in 

the earlier sections might be put together to yield two-stage 

processes, it will suffice to mention just a couple of examples 

here. 

7.1. Interpolation/interpolation. Suppose that we want to con- 

struct a piecewise bicubic SLrface based on data given on a 

rectangular grid as in (3.4)-(3.6). In each subrectangle H 

the 16 coefficients of the bicubic f (cf. (4.6)) would be de- 

termined by the values of f, f , f , and f   at each of the 
J ' x'  y'     xy 

four comers.  Now since our original data-fitting problem only 

specifies the values of the function at the grid points, local 

interpolation cannot be carried out directly.  However, we can 

use the data to provide estimates for the values of f , f , x Y 
and f   at the grid points (i.e., we construct g interpolating 

xy 
the data); then we can use local bicubic interpolation as a 

second stage. The reader will have no difficulty in imagining 

ways to produce estimates for these quantities. For some meth- 

ods which appear in the literature, see the papers of Akima 
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[5,6], Koelling and Whitten [121], and Späth [183], , 

     7.2, Approximation/interpolation,  Instead of making thp. first- 

stage process interpolation as in section 7.1, it woulu also be 

possible to use an approximating process.  For example, one 

might use least-squares polynomial approximation to construct 

a patch surface and then use some convenient interpolation pro- 

cess as a second stage.  For an example of this type, see Mess- 

ing et al [114]. 

7.3. Approximation/approximation. This combination is parti- 

cularly convenient if we are not concerned about getting an in- 

terpolating function.  Both stages can be made local.  To give 

an example, recently I have constructed an algorithm for fitting 

surfaces to scattered data in which the first stage consists 

of polynomial least-squares patch approximation (with adaptive 

choice of data--see section 6), and where the second stage con- 

sists of direct local tensor product spline approximation.  Both 

stages are local, and the final surface is a tensor product 

spline.  Since the second stage is a direct method, it is very 

cheap to apply. Experiments with real-life data (e.g. from 

heart potentials, potential fields, and geological maps--see 

section 2) have produced very promising results.  Details, in- 

cluding an analysis of error bounds, will appear elsewhere.  I 

have also tried alternate versions where the patches are con- 

structed as low- order polynomials which are best approximations 

in the i, or Z    sense (via linear programming) again with adap- 
i 00 

tive choice of data.     The  results were very similar.     Finally, 

I have also experimented with computing patch approximations, 

followed by continuous  least-squares  tensor-product spline ap- 

proximation.     Again,   the experiments were promising. 

8,     Contouring 

As indicated  in the  introduction,   frequently  the goal in 

i 
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fitting a surface  f to data is to construct a contour map   , 

which approximates the contour map of the unknown surface F 

which produced the data.  In this section we discuss some methods 

for constructing contour maps of a surface f. 

8,1,  Piecewise linear functions on triangles. When the func- 

tion f to be contoured is a piecewise linear function defined 

on triangles (and globally continuous), locating contours re- 

duces essentially to a matter of good bookkeeping.  Indeed, if 

H is the height of the contour of interest, then it is easily 

seen that for a given triangle T with vertices. A, B, and C, 

(8.1) the contour does not pass through T if H < min(f(A), 

f(B), f(C))  or if H > max(f(A),f(B),f(C)) 

and 

(8.2) the contour intersects exactly two sides of    T    otherwise. 

If case  (8.2)   holds,   it is easy to determine which two sides 

are intersected and,  moreover,   by using inverse linear interpo- 

lation between vertex values,   the points on these sides where 

the contour crosses can be determined.     Specifically,   if,   for 

example, 

f(A)  < H < f(B), 

then the contour crosses the line from A to B at the point 

on the line which is a distance of 

(H-f(A))   ,    , 
(f(B)-f(A)) |B A| 

from A. Given the points on two sides of a triangle where the 

contour line crosses, we can now draw the contour line since it 

is simply a straight line between the points. An algorithm to 

carry out this procedure requires enumerating the triangles and 

vertices and some kind of effective search procedure. There 

are several available in the literature. For ALGOL programs, 
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see Heap   [111,112].     (An earlier paper of Heap and Pink   [113]     , 

contains a  similar FORTRAN program but only for regular triangu- 

larizations.)     Lawson   [128]  discusses a similar algorithm.     The 

algorithms mentioned  include  two possible approaches:     (1)   one 

may start with a triangle where  it is known the contour inter- 

sects,   and  trace this  contour as  far as  it goes,   or   (2)   one may 

simply draw  the contour  lines  in all  triangles which have  them. 

8.2.     Piecewise bilinear  functions on rectangles.     Suppose now 

that  the  function    f     to be contoured is a piecewise   (continuous) 

function on a rectangle partitioned  into  subrectangles by a grid. 

Since     f    is  linear in    x    or    y    on the edges,   it  follows  that 

we can again determine whether a contour line of height    H 

crosses an edge by inverse  linear interpolation.     There is in 

this case,   however,   a serious difficulty which does not arise 

in the case of triangles.     It may happen that the height    H 

lies on three or even four sides  of  the  rectangle.     In this 

case,   it  is possible  that  two different contour lines pass 

through the  rectangle,   and it is not clear how to interconnect 

the points   (see Figure  6). 

I^J 
Figure 6.  Two Contours in a Rectangle 

Put another way, if we are following a contour and enter a rec- 

tangle as shown above in Figure 6 on the bottom line, then it 

is not clear whether we should now turn right or turn left. One 

approach to designing an algorithm in this case is to simply 
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always go right, say, even though this may In the end be wrong, i 

     (If it is, we have to start over with a coarser mesh,)  This 

technique was incorporated in an algorithm by Heap [111,112]-- 

the paper contains a FORTRAN program.  (An earlier ALGOL pro- 

gram can be found in Heap and Pink [113]. 

A second approach to handling the ambiguity problem is com- 

pute an approximation to the value of f at the center of the 

rectangle (e.g., by taking the average of the four-corner val- 

ues) and then to triangulate the rectangle. This amounts to a 

second-stage approximation process, and the surface contoured 

is no longer f itself but an approximation g.  This idea was 

programmed in ALGOL in Heap and Pink [113] and in FORTRAN in 

Heap [111,112]. 

Once the set of points for a particular contour have been 

found, there are a variety of ways of drawing a contour line 

through these points.  One possibility is to simply draw 

straight lines between each of the points. The actual contour 

lines are expressions of the form y = (a+bx)/(c+dx)  in each 

rectangle. These are generally not straight lines. Hence, if 

smoother contours are desired, one may use any one of a number 

of methods for drawing a smooth curve through an ordered set of 

points in the plane.  For example, the curve could be computed 

in parametric form using one-dimensional splines. Another pos- 

sibility would be to use the Bezier methods with either Bern- 

stein polynomials or with B-splines (cf. Gordon and Riesenfeld 

[89] and Riesenfeld [163]), although in this case the curves 

will not exactly go through the points. For other algorithms 

see Marlow and Powell [138] or McConalogue [139]. 

8.3.  Piecewise quadratics on triangles. Suppose now that f 

is a piecewise quadratic defined on a triangular partition.  In 

this case a contour line at height H passing through a trian- 

gle must be described by a conic section.  Such a section can 
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be  represented  in parametric  form as i 

X(t)    =    (b0   4b1t+b2t
2)/(b34b4t   )   b5t

2) 

y(t) = (b6 + b7t^b8t
2)/(b3 .b4t^ b5t

2), 

see Powell [156],  Powell has promised an algorithm based on 

this Dbservation. 

We turn now to some methods for handling general functions 

f on arbitrary domains D. 

8,4, A simple line-printer method.  The following simple-minded 

method can produce reasonable-looking contours without excessive 

computation, and without recourse to a p1.,jLLor.  Suppose H is 

a rectangle enclosing the domain D, and that we partition H 

as H = UH.  with a rectangular grid as in (6.2), Let HL < HU 

be given real numbers. Finally, suppose that t. . is some 

point in H . where f can be evaluated (perhaps one of the 

comers or the center). Define 

0 ,  if f(ti.) < HL 

(8,3)  C  = { 9 ,  if f(t, .) > HU 
ij 

v , if HL + (v-l)h < f(t ) < HL + vh, l<v<8. 

for all i = 0,l,,.,,k and j = 0,1, ..., 1 (where h = (HU-HL)/8) . 

The (k+2) by (.0+2) matrix C contains only integers, and if it 

is printed out without either horizontal or vertical spacing, 

we obtain a reasonable-looking contour map of the function. A 

typical example is included in Figure 7, The method can be 

refined by using an alpha-numeric array C and more than 10 

symbols. It can also be refined by using a printer with appro- 

priate horizontal spacing so that each symbol occupies a square 

rather than a rectangle (e.g., cf, Buneman [40]). 
■ 

8.5.  Threading on a rectangular grid. As in section 8.4, 
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1???22??33333M»'M555556fifi6777778888fl888887777 I 
???2??2????23333M»«555fi6fl67777788888888888777 
?211111111????3334455556Bfi77777888888888888888 
2211111111112??33^55566677778888888999999999 
21111ooooo11112233U55566fl77788888999999999999 
2111oooooooo11223344i»556B777888899999999999999 
2111ooooooooo112233'»<»556fi777888999999999999999 
211oooooooooo112233U5566778889999999999999999 
211oooooooooo1122334W566778889999999999999999 
211ooooooooo111223U55566778889999999999999999 
11 looooooool 112233^55666778888999999999999999 
111oooooo11112233^555667778888899999999999999 
11111111111122334W556667778888889999999999999 
111111111122233U455666777788B8888889998888888 
11111112222333W555666777788888888888888888888 
2222222223333**5556667778888888889999999999998 
22222233333^55566777788888889999999999999999 
222333333WW555667777888888999999999999999999 
23333334W455556667778888889999999999999999999 
333333WWW5566677778888889999999999999999999 
333333*4^555566677778888888999999999999999999 
233333HU555566677777888888R99999999999999999 
233333****555566667777788888888899999999999999 
223333****555566666777778888888888899999999999 
223333*****55556666677777788888888888999999999 
2233333****55555666666777777788888888999999999 
2223333*****5555556666667777778888888899999999 
22233333*****555555666666777777788888899999999 
?2233333******5555556?666677777778888889999999 
222233333*****55555566666667777778888888899999 
222233333******5555566666667777777888888888899 

Figure 7.    A Simple Contour Map   (Heart Potential) 

suppose  that    D    is imbedded   in a rectangle    H   which has been    , 

partitioned by a rectangular grid as  in   (6.2).    Assuming that 

f    is continuous,   it is  still possible   to decide which of the 

grid lines a particular contour of height    H    crosses by examin- 

ing the end-points of each such line.     Since    f    is not generally 

linear along such a line,  we cannot determine exactly where  the 

crossing point is by linear  inverse  interpolation.     However,   if 

we are willing  to evaluate    f    a few times along this line,  we 

can estimate  the crossing point quite accurately by bisection. 
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for example.     Once a sequence of points on a contour has been 

determined,  we may thread a curve  through the points  just as  in 

section 8,2. 

This method does have  one  serious drawback,   however,-- 

just as with  the method discussed in section 8.2--,   if we are 

tracing a contour it may happen  that after entering a  triangle 

there is an ambiguity as  to which of two points to use to exit 

the  rectangle.     One could  opt for an ad hoc rule or try the 

second-stage approximation described in section 8,2,    For an 

example of how this method works,   see Falconer  [76J   (based on 

Lodwick and Whittle   [130]),  where it is applied to a surface 

constructed by local weighted quadratic polynomial  least-squares 

approximation.    Since bisection is involved,  one should realize 

that in drawing contours with this  routing the surface    f    Is 

going to be evaluated a great many times, 

8,6.     Threading on a triangular grid.    An obvious cure  for the 

ambiguity didcussed in section 8.5  for threading on a rectangu- 

lar gvlt' is to use a triangular partition in the first place. 

Then the bisection method coupled with a  threading routine leads 

immediately to a contouring routine for general surfaces    f. 

Strangely enough,  I have not been able to find anywhere where 

this method has been suggested. 

I have made no effort  to track down all available papers 

on contouring.    A few which I did find and have not yet men- 

tioned are Cottafawa and le Moli   [60],  Dayhoff  [64], and Pelto 

et al   [152],    There are many others. 

In some cases it may be desirable to have a more graphic 

picture of a surface than a contour map can provide.    Recently 

there has been considerable effort devoted to computer methods 

for displaying surfaces on a scope or with a plotter.    For some 

examples of output and a discussion of methods,   see e.g.   the 

book by Bamhill and Riesenfeld   [20]  on computer-aided design. 
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If an actual 3-D picture is desired instead of just a perapec- i 

tlve, it is even possible to produce holographs. 
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